首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11111篇
  免费   1353篇
  国内免费   931篇
电工技术   297篇
综合类   783篇
化学工业   2752篇
金属工艺   1745篇
机械仪表   220篇
建筑科学   568篇
矿业工程   189篇
能源动力   1126篇
轻工业   395篇
水利工程   261篇
石油天然气   336篇
武器工业   58篇
无线电   960篇
一般工业技术   1647篇
冶金工业   391篇
原子能技术   409篇
自动化技术   1258篇
  2024年   27篇
  2023年   209篇
  2022年   275篇
  2021年   377篇
  2020年   355篇
  2019年   355篇
  2018年   375篇
  2017年   438篇
  2016年   397篇
  2015年   395篇
  2014年   546篇
  2013年   1059篇
  2012年   685篇
  2011年   762篇
  2010年   596篇
  2009年   662篇
  2008年   633篇
  2007年   679篇
  2006年   614篇
  2005年   498篇
  2004年   477篇
  2003年   396篇
  2002年   355篇
  2001年   287篇
  2000年   258篇
  1999年   183篇
  1998年   168篇
  1997年   149篇
  1996年   146篇
  1995年   151篇
  1994年   119篇
  1993年   103篇
  1992年   89篇
  1991年   96篇
  1990年   93篇
  1989年   91篇
  1988年   58篇
  1987年   37篇
  1986年   24篇
  1985年   44篇
  1984年   32篇
  1983年   16篇
  1982年   24篇
  1981年   14篇
  1980年   13篇
  1979年   6篇
  1978年   7篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Partitioning to surfaces is an important sink for volatile organic compounds (VOCs) indoors, but the mechanisms are not well understood or quantified. Here, a mass spectrometer was coupled to a portable surface reactor and a flow tube to measure partitioning of VOCs into paint films coated onto glass or wallboard, and their subsequent diffusion. A model was developed to extract values of the effective absorbing organic mass concentration of the film, Cw, which is a measure of absorption capacity, and VOC diffusion coefficients, Df, from VOC time profiles measured during film passivation and depassivation. Values of Cw agreed well with the value estimated from the paint film mass and flow tube air volume, and Df values (also measured using attenuated total reflectance-Fourier transform infrared spectroscopy) correlated well with VOC vapor saturation concentrations, C*, estimated using a group contribution method. The value of these relationships for estimating key parameters that control VOC partitioning into paint and the fate of VOCs indoors was demonstrated using a house model, which indicated that >50% of VOCs with C* ≤108 μg/m3 (C* of octane, hexanone, and propanol) that contacted a paint film of typical thickness fully permeated the film regardless of emission duration.  相似文献   
42.
In this study, the use of Cu and Ni interlayers have been investigated for functional core-rim composite part production with WC-Co 9?wt-% feedstock/steel. For this purpose, different experiments have been performed and joining condition, shear strength and microstructure of the intermediate region have been examined. It has been found that AISI 4340 insert/WC-Co have been joined and 85.8?MPa shear strength achieved, but high speed steel insert has not joined. Moreover, it has been determined that better results are obtained with Ni interlayer. Under the same conditions, when the 40?µm Ni interlayer has been used between AISI 4340 core and WC-Co rim, shear strength has been increased approximately twice and has been 162.7?MPa.  相似文献   
43.
Injecting CO2 into oil reservoirs can improve the oil recovery,meanwhile achieve CO2 storage.The diffusion of CO2 in oil-water systems has a substantial impact on this process.The interface significantly affects the mass transfer of CO2 between oil and water phase.In this paper,based on the determination of the CO2 diffusion coefficient in oil or water phases,the diffusion processes of CO2 from oil to water were experimentally investigated under different pressures.A numerical method was proposed to calculate the pressure drop and the diffusion coefficient in the process of CO2 diffusion from oil to water.The experimental results indicated that the CO2 diffusion coefficient in oil or water increased rapidly with pressure up to the critical pressure of CO2 and gradually slowed down thereafter.The CO2 diffusion from oil to water was much slower than that in oil or water.The diffusion coefficient of CO2 from oil to water was one magnitude lower than that in the single liquid phase of oil or water,and the effect of pressure was not significant.Based on the diffusion coefficient of CO2 in a single liquid phase and the proposed numerical method,the pressure drop and the numerical diffusion coefficient in the process of CO2 diffusion from oil to water were calculated.The relative errors between the experimental and numerical results were within 9%.Therefore,the numerical method proposed herein can be used to predict the diffusion process of CO2 from oil to water and the diffusion coefficient associated with this process.  相似文献   
44.
《Ceramics International》2020,46(2):2110-2115
A novel approach to enhance the solar cell efficiency via employing a luminescent downshifting mechanism is presented in this work. Gold metal ions were diffused into a commercially available sodalime silicate glass using a versatile field-assisted solid-state ion diffusion technique under different experimental conditions. Some of these samples were irradiated with ns-laser to segregate the diffused ions into dimers and trimers to enhance their luminescence characteristics. The consequent structural modifications in the glass matrix were examined using Fourier transform infrared spectroscopy. Optical absorption and luminescence measurements were performed to check the presence of resonant plasmonic absorption of nanoclusters and suitability of the samples as luminescent downshifters, respectively. At UV excitation wavelengths (260 and 340 nm), the doped samples downshifted the solar spectrum compared to their undoped counterparts. Furthermore, ns-laser irradiation of the doped samples significantly enhanced the luminescence intensity in comparison to the unirradiated samples. Real-time performance of these samples was tested by measuring the output power of a Si solar cell covered with the treated coverglass when illuminated with a solar simulator. Finally, the Vicker's micro-indentation was applied to conclude that ionic diffusion increased the glass hardness as well.  相似文献   
45.
SiC monoliths containing 5 wt.% Al2O3-Y2O3 additive were joined using a thin Ti3AlC2, TiC, or Ti filler. After joining at 1900 °C for 5 h under 3.5 MPa, the joint properties were compared in terms of the microstructure, phase evolution, joining strength, and possible elimination of the joining layer. Although all samples showed a sound joint, the microstructure differed according to the filler. SiC joined with Ti3AlC2 filler showed an indistinguishable joining interface due to the filler decomposition followed by solid-state diffusion into the SiC base, whereas TiC filler remained at the interface without showing decomposition or diffusion. In contrast, the Ti filler showed a possible elimination of the joining layer because of the diffusion of Ti and the formation of TiC. The mean joining strengths for the Ti3AlC2, TiC, and Ti fillers were 300, 234, and 248 MPa, respectively, which were comparable to that of the base SiC material (250 MPa).  相似文献   
46.
Recently, various studies have been conducted on hydrogen energy as a means of replacing conventional fuels. Polymer electrolyte membrane water electrolyzers (PEMWEs) are being studied as a means of producing hydrogen for renewable energy. The PEMWE can be operated over a wider range than other types of water electrolyzers and can be connected to a renewable energy source, such as solar or wind. However, further studies are required because the water accompanying the hydrogen in the cathode presents a problem regarding hydrogen purity and storage. The phenomenon of water transport which is occurred on the PEMWE is analyzed by electro-osmotic drag and diffusion in the membrane. Electro-osmotic drag coefficients which are calculated by mass flow rate of discharged water with hydrogen are compared to the results of previous studies. The results of Electro-osmotic drag coefficient are different from previous studies at each operating condition. This difference is considered to be caused by the capacity of PEMWE such as active area and the number of cell.  相似文献   
47.
The diffusion behavior of ethylene in polyethylene is of great importance for the polymerization and degassing of polyethylene (PE) industry. Based on the gravimetric sorption and desorption measurement approach, an intelligent gravimetric analyzer is applied to obtain the solubility and diffusion coefficients of ethylene in solid low-density PE (LDPE) with different melt indices at 30°C to 70°C, 0 to 4 atm and in molten LDPE at 160°C to 230°C, 0 to 4 atm, respectively. Results indicate that both the solubility and diffusion coefficients of ethylene in solid LDPE are smaller than those in molten LDPE, while the dissolution enthalpy and diffusion activation energy of ethylene in solid LDPE are higher. In addition, one- and two-dimensional diffusion models are built and the effects of particle size, polymer properties, and operation conditions are systematically investigated on the diffusion behaviors of ethylene in solid and molten LDPE.  相似文献   
48.
This study presents the flame structure influenced by the differential diffusion effects and evaluates the structural modifications induced by the turbulence, thus to understand the coupling effects of the diffusively unstable flame fronts and the turbulence distortion. Lean premixed CH4/H2/air flames were conducted using a piloted Bunsen burner. Three hydrogen fractions of 0, 30% and 60% were adopted and the laminar flame speed was kept constant. The turbulence was generated with a single-layer perforated plate, which was combined with different bulk velocities to obtain varied turbulence intensities. Quasi-laminar flames without the plate were also performed. Explicit flame morphology was obtained using the OH-PLIF. The curvature, flame surface density and turbulent burning velocity were measured. Results show that the preferential transport of hydrogen produces negatively curved cusps flanked with positively curved bulges, which are featured by skewed curvature pdfs and consistent with the typical structure caused by the Darrieus-Landau instability. Prevalent bulge-cusp like wrinkles remain with relatively weak turbulence. However, stronger turbulence can break the bulges to be finer, and induce random positively curved cusps, therefore to destroy the bulge-cusp structures. Evident positive curvatures are generated in this process modifying the skewed curvature pdfs to be more symmetric, while the negative curvatures are not affected seriously. From low to high turbulence intensities, the hydrogen addition always strengthens the flame wrinkling. The augmentation of flame surface density and turbulent burning velocity with hydrogen is even more obvious at higher turbulence intensity. It is suggested that the differential diffusion can persist and even be strengthened with strong turbulence.  相似文献   
49.
In the present study, the effect of fine water mist on extinguishment of a methane–air counterflow diffusion flame was investigated to understand the underlying physics of fire extinguishment of highly stretched diffusion flame by water mist. Twin-fluid atomizers were used to generate polydisperse water mist of which Sauter mean diameters were 10, 20, 40, and 60 μm. When water mist is not added, the critical stretch rate at extinguishment is 439 s−1 as compared to the theoretical value of 460 s−1. For the case with water mist addition, when the stretch rate is small enough, almost all the water mist evaporates within the flame zone. On the other hand, for high stretch rate case, large mist droplets pass through the flame zone and can reach the stagnation plane. However, no oscillatory motion was found around the stagnation plane. Critical stretch rate at extinguishment decreases monotonously with the mass fraction of water mist independently of the mist diameter within the range of D32 from 10 μm to 60 μm. On the other hand, with increase in the surface area parameter, the critical stretch rate at extinguishment decreases rapidly and becomes less sensitive at large surface area parameter, of which tendency is qualitatively in good agreement with theoretical predictions. For a constant surface area parameter, the critical stretch rate decreases with mist diameter because the mass fraction of water mist should increase in proportion to the mist diameter to keep the surface area parameter constant. When the water mist evaporates completely in the flame zone as in the present study, the mass fraction of the water mist is the dominant factor for fire extinguishment, rather than the surface area parameter. Therefore, an appropriate combination of stretch rate and water mist mass fraction should be provided to suppress effectively a given fire with a small amount of water mist.  相似文献   
50.
The present work deals with the investigation of elasto-thermo diffusion interactions inside a spherically isotropic hollow sphere in the context of linear theory of generalized thermoelastic diffusion based on Green and Lindsay theory. The inner and outer boundaries of the body are free from stresses and are subjected to a time-dependent thermal shock and also the chemical shock. Laplace transform techniques are used to write the basic equations in the form of a vector matrix differential equations, which is then solved by the eigenvalue approach. The inversion of the transformed solution is carried out by applying the method of Bellman. The stress, temperature, mass concentration and chemical potential are computed and presented graphically. A comparative study of diffusive medium and thermoelastic medium is carried out, and it was seen that the effect of diffusion is significant on the stresses. A comparison of spherically isotropic body with isotropic body has also been presented, and a significant difference is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号